Continuous Dynamic Simulation for Morphing Wing Aeroelasticity
نویسندگان
چکیده
The morphing of an air vehicle is to change its shape and size substantially during flight. Thus, the morphing vehicle is to achieve a broader range of operational modes, all of which will maximize the vehicle performance throughout its mission profile. The dream of human flight has been to mimic birds or insect flights in similar manner since the days of Leonardo da Vinci. Our current aeronautical technology brings us closer to such a feat by vehicle morphing. This is evidenced by the ongoing DARPA contracts on designs of a Sliding-skin concept (in-plane morph) and a Folding wing concept (out-of-plane morph). [1-4]. However, the R&D of its engineering design/analysis methodology appears to be lagging behind. One such important methodology is the computational capability to assess the flight dynamics and aeroelastic instability, or stability, of a morphing vehicle during the course of its morphing motion.
منابع مشابه
Morphing Wing Aeroelasticity by Continuous Dynamic Simulation using Nonlinear Aerodynamic/Nonlinear Structure Interaction (NANSI) Methodology*
Our objective is to develop a nonlinear aerodynamic and nonlinear structural interaction (NANSI) methodology as an expedient aeroelastic tool to handle continuous dynamic motion of morphing vehicles/wings throughout the flight regimes of subsonic to transonic speeds. The proposed morph vehicles for method demonstration is the Lockheed Folding wing (the Folding wing). Preliminary results on Flut...
متن کاملEvaluation of the Centre Manifold Method for Limit Cycle Calculations of a Nonlinear Structural Wing
In this study the centre manifold is applied for reduction and limit cycle calculation of a highly nonlinear structural aeroelastic wing. The limit cycle is arisen from structural nonlinearity due to the large deflection of the wing. Results obtained by different orders of centre manifolds are compared with those obtained by time marching method (fourth-order Runge-Kutta method). These comparis...
متن کاملPareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کاملAIAA 98-2421 An Overview of Recent Developments in Computational Aeroelasticity
The motivation for Computational Aeroelasticity (CA) and the elements of one type of the analysis or simulation process are briefly reviewed. The need for streamlining and improving the overall process to reduce elapsed time and improve overall accuracy is discussed Further effort is needed to establish the credibility of the methodology, obtain experience, and to incorporate the experience bas...
متن کاملLow-dimensional Modeling and Aerodynamics of Flexible Wings in Flapping Flight
All natural flyers equip flexible wings. It’s widely thought that the wing flexibility can play important roles in flight aerodynamics. In the current work, a combined experimental and computational method is developed to study the role of morphing wing in hovering dragonfly aerodynamic performance. We start with taking high-speed images of a freely flying dragonfly. Next, a surface reconstruct...
متن کامل